Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cereb Blood Flow Metab ; : 271678X231214823, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974315

RESUMO

Existing methods for voxelwise transient dopamine (DA) release detection rely on explicit kinetic modeling of the [11C]raclopride PET time activity curve, which at the voxel level is typically confounded by noise, leading to poor performance for detection of low-amplitude DA release-induced signals. Here we present a novel data-driven, task-informed method-referred to as Residual Space Detection (RSD)-that transforms PET time activity curves to a residual space where DA release-induced perturbations can be isolated and processed. Using simulations, we demonstrate that this method significantly increases detection performance compared to existing kinetic model-based methods for low-magnitude DA release (simulated +100% peak increase in basal DA concentration). In addition, results from nine healthy controls injected with a single bolus of [11C]raclopride performing a finger tapping motor task are shown as proof-of-concept. The ability to detect relatively low magnitudes of dopamine release in the human brain using a single bolus injection, while achieving higher statistical power than previous methods, may additionally enable more complex analyses of neurotransmitter systems. Moreover, RSD is readily generalizable to multiple tasks performed during a single PET scan, further extending the capabilities of task-based single-bolus protocols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...